Collocation Methods for Exploring Perturbations in Linear Stability Analysis∗
نویسنده
چکیده
Eigenvalue analysis is a well-established tool for stability analysis of dynamical systems. However, there are situations where eigenvalues miss some important features of physical models. For example, in models of incompressible fluid dynamics, there are examples where linear stability analysis predicts stability but transient simulations exhibit significant growth of infinitesimal perturbations. This behavior can be predicted by pseudo-spectral analysis. In this study, we show that an approach similar to pseudo-spectral analysis can be performed inexpensively using stochastic collocation methods and the results can be used to provide quantitative information about instability. In addition, we demonstrate that the results of the perturbation analysis provide insight into the behavior of unsteady flow simulations.
منابع مشابه
Numerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کاملPassivity-Based Stability Analysis and Robust Practical Stabilization of Nonlinear Affine Systems with Non-vanishing Perturbations
This paper presents some analyses about the robust practical stability of a class of nonlinear affine systems in the presence of non-vanishing perturbations based on the passivity concept. The given analyses confirm the robust passivity property of the perturbed nonlinear systems in a certain region. Moreover, robust control laws are designed to guarantee the practical stability of the perturbe...
متن کاملON THE STABILITY AND THRESHOLD ANALYSIS OF AN EPIDEMIC MODEL
We consider a mathematical model of epidemic spread in which the population is partitioned into five compartments of susceptible S(t), Infected I(t), Removed R(t), Prevented U(t) and the Controlled W(t). We assume each of the compartments comprises of cohorts of individuals which are identical with respect to the disease status. We derive five systems of equations to represent each of the ...
متن کاملStability and numerical solution of time variant linear systems with delay in both the state and control
In this paper, stability for uncertain time variant linear systems with time delay is studied. A new sufficient condition for delay-dependent systems is given in matrix inequality form which depends on the range of delay. Then, we introduce a new direct computational method to solve delay systems. This method consists of reducing the delay problem to a set of algebraic equations by first expand...
متن کاملAnalysis of Linear Two-Dimensional Equations by Hermitian Meshfree Collocation Method
Meshfree Collocation Method is used to solve linear two-dimensional problems. This method differs from weak form methods such as Galerkin method and no cellular networking and no numerical integration. Therefore, this method has no constraints such as the integration accuracy and the integration CPU time, and equations can be isolated directly from the strong form of governing PDE. The fundame...
متن کامل